
Poseidon: Practical Homomorphic Encryption
Accelerator

Yinghao Yang‡∗, Huaizhi Zhang∗, Shengyu Fan†, Hang Lu∗‡§, Mingzhe Zhang†, Xiaowei Li∗‡§

∗ State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China.
† State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing, China.

‡ University of Chinese Academy of Sciences, Beijing, China.
§ Zhongguancun Laboratory, Beijing, China.

{yangyinghao21b, luhang, lxw}@ict.ac.cn, amazing z@outlook.com, damionfan@163.com, zhangmingzhe@iie.ac.cn

Abstract—With the development of the important solution for
privacy computing, the explosion of data size and computing
intensity in Fully Homomorphic Encryption (FHE) has brought
enormous challenges to the hardware design. In this paper,
we propose a practical FHE accelerator - “Poseidon”, which
focuses on improving the hardware resource and bandwidth
consumption. Poseidon supports complex FHE operations like
Bootstrapping, Keyswitch, Rotation and so on, under limited
FPGA resources. It refines these operations by abstracting five
key operators: Modular Addition (MA), Modular Multiplication
(MM), Number Theoretic Transformation (NTT), Automorphsim
and Shared Barret Reduction (SBT). These operators are com-
bined and reused to implement higher-level FHE operations.
To utilize the FPGA resources more efficiently and improve
the parallelism, we adopt the radix-based NTT algorithm and
propose HFAuto, an optimized automorphism implementation
suitable for FPGA. Then, we design the hardware accelerator
based on the optimized key operators and HBM to maximize
computational efficiency. We evaluate Poseidon with four domain-
specific FHE benchmarks on Xilinx Alveo U280 FPGA. Empirical
results show that the efficient reuse of the operator cores and
on-chip storage enables superior performance compared with the
state-of-the-art GPU, FPGA and accelerator ASICs. We highlight
the following results: (1) up to 370× speedup over CPU for the
basic operations of FHE; (2) up to 1300×/52× speedup over
CPU and the FPGA solution for the key operators; (3) up to
10.6×/8.7× speedup over GPU and the ASIC solution for the
FHE benchmark.

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) is considered to be
one of the most promising privacy-preserving methodologies.
With FHE, sensitive data like financial records, medical his-
tory, private personal habits and so on [10], [19] can be
encrypted by their owner and sent to the third-party service
provider for direct processing on the encrypted data. As shown
in Fig. 1, the user uploads the encrypted data to the cloud
server to fulfill the computations, and then downloads and
decrypts the data returned from the server for the result. In the

Corresponding Author: Hang Lu. This work is supported in part by the
National Natural Science Foundation of China (Grant No. 62002339 and No.
62172387), in part by the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDB44030200), and in part by the Youth
Innovation Promotion Association CAS (Grant No. 2021098). This work is
also sponsored by CCF-Huawei Populus Grove Fund.

ClientClient

Secret KeySecret Key

Public KeyPublic Key

Relinearization KeyRelinearization Key

Enc

config

Private

Data
Encrypted

Data

ServerServer

Computation on

Encrypted data

Applications
Encrypted

Result

Decrypted

Result

Decrypt

Trust

Barrier

Fig. 1. General concept of FHE.

whole process, the private data are “available but invisible” to
the service provider, without the risk of privacy leakage.

The development of FHE has been rapid and abundant in
recent years. In 2009, Gentry [18] proposed the first FHE
scheme. It supports any number of homomorphic additions and
multiplications. Several classic FHE schemes have also been
proposed to improve Gentry’s work, such as BFV [17], BGV
[6], TFHE [12], and CKKS [11]. TFHE is an implementation
based on the Boolean circuit, while BGV, BFV, and CKKS are
based on the arithmetic circuits. The concept of homomorphic
calculation is also different for these schemes: BGV and BFV
aim at the exactly accurate decrypted result compared with the
plaintext result, while CKKS supports approximate computing
that allows slight precision loss of the result. Although a
collection of FHE algorithms has been proposed, there is still a
big gap between the theory and its practical deployment. Even
with the highly optimized FHE library, the FHE applications
still run 10,000× to 100,000× slower than the unencrypted
applications on the CPU. There are two main reasons for such
slowdown: (1) Ciphertext size is greatly inflated compared to
the plaintext due to the FHE algorithm itself, which causes
frequent data movements that further exacerbates the ”memory
wall” problem; (2) just because of the ciphertext inflation,
the computation intensity is also several orders of magnitude
larger than the plaintext.

Landscape of Prior Work. In order to narrow the gap
mentioned above, recent researches have been devoted to de-
sign domain-specific architectures to offload the key operator

1

computation from CPU, and they can be categorized into three
types according to the employed hardware platform:

(1) GPUs. Some researches in the literature [4], [5], [21],
[22], [39], [40] test multiple FHE schemes on different GPU
platforms to explore the most matched architecture on the
premise of the abundant bandwidth already provided by high-
end GPUs. Jung et al [21] leverages a single NVIDIA Tesla
V100 and achieves up to 257× speedup compared with CPU.
Tan et al. [37] introduces a new interface for embedding
the cryptographic operations into floating-point operations as
the ”GPU-friendly” cryptographic protocols. Compared to the
CPU, it achieves up to 150× speedup. Some open-source
libraries [14], [31], [38] are also proposed for the agile FHE
software development. As a general-purpose architecture, GPU
is not specially designed for FHE. It lacks key operator
implementation in the computing cores. Besides, compared
with other domain-specific architectures like FPGA and ASIC,
large power consumption is also the major weakness of GPU.

(2) FPGAs. As a customizable-computing device, the FHE
accelerators using FPGA mostly target the highly efficient
implementation of the specific FHE operators [7]–[9], [15],
[25], [26], [41], such as Number Theoretic Transform (NT T
hereafter), Inverse Number Theoretic Transform (INT T here-
after), Modular Multiplication (ModMult hereafter) and Mod-
ular Addition (ModAdd hereafter) etc. For example, Kim et al.
[25], [26] targets ModMult and NT T and achieves up to
118× speedup. Cao et al. [7] applies the algorithm in [20] to
accelerate the ModMult on large numbers. Other works focus
on implementing the FHE high-level operators or the complete
FHE algorithm on FPGA. Roy et al. [33], [34] designed the
BFV accelerator based on the multi-core architecture. Y. Doröz
et al. [16] aims at the fast decryption/encryption operations.
HEAX [32], as the most state-of-the-art FPGA accelerator
for FHE, proposes a fully pipelined micro-architecture and
reports 200× speedup to CPU. FHE applications are both
computational and memory intensive. FPGA device however,
is limited by the programmable resources and data movement
bandwidth. Therefore, the design challenge lies on the effi-
cient reuse of the resources instead of blindly boosting the
parallelism, which is ignored by these works.

(3) ASICs. F1 [35] is the first ASIC-based FHE accelerator
that is programmable and capable of executing complete
CKKS-alike FHE algorithm. F1 outperforms the state-of-the-
art software implementation by up to 17,000×. Based on F1,
CraterLake [36] enables the unbounded multiplicative depth
by supporting bootstrapping in hardware and outperforms F1
by 11.2×. BTS [24] further explores the challenges of boot-
strapping and selects the proper parameter sets by analyzing
the bandwidth and computational requirements. ARK [23]
leverages software/hardware codesign to eliminate the off-
chip bandwidth bottleneck by the runtime data generation and
inter-operation key reuse. Benefited from the flexible resource
usage and relatively more freedom in the design phase, the
ASIC-based FHE accelerators demonstrate better performance
than GPUs and FPGAs. However, current prototypes in the
literature still stay in the simulation phase, with impractical

assumptions like unattainable bandwidth provided and hun-
dreds of megabytes on-chip storage [23], [24], [36].

In this paper, we propose a practical FPGA-based FHE ac-
celerator — Poseidon. Apart from just piling up the resources
for the highest performance, Poseidon aims at the maximal
efficiency under the constraint of limited resources. Upon our
observation, there are plenty of resource reuse opportunities
in the basic FHE operations. Poseidon fully decomposes these
basic operations into more fine-grained individuals which we
call the ‘operators’ in this paper. By recomposing and time-
multiplexing these operators, it achieves the most efficient
utilization of the FPGA resources and the best balance between
the computation parallelism and bandwidth demand. The con-
tributions of this paper are listed as follows:
• We propose a practical FPGA-based FHE accelerator –
Poseidon. It implements all the basic operations of the CKKS-
alike FHE algorithm, including homomorphic addition,
homomorphic mulit plication, rescale, rotation, keyswitch,
modup/down and even the expensive bootstrapping. Widely
supported operations enable Poseidon applicable for more
complex FHE applications that require a larger multiplicative
depth or tough security level.
• We propose an FHE-specific micro-architectural design
paradigm based on operator reuse. We decompose the afore-
mentioned basic operations into more fine-grained operators,
and instantiate the hardware compute unit for each operator.
In particular, we implement a hardware-friendly automorphism
operator called HFAuto. It converts the data movement on the
super-long vector into the swap operation of the sub-vectors
in an arbitrary granularity.
• We implement the overall Poseidon prototype on commercial
FPGA platform, Xilinx Alveo U280, to evaluate its perfor-
mance in practice. We highlight the following results: 1300×
and 52× operator speedup compared with Xeon CPU and GPU
respectively; on par with the ASIC-based accelerator like F1.

II. BACKGROUND AND MOTIVATION

A. FHE Basic Operations

The FHE algorithm comprises of a series of “basic opera-
tions”. Taking CKKS as the example, it mainly consists of the
following operations:

① Homomorphic Addition: there are two cases for the ho-
momorphic addtion (HAdd for short): ciphertext-plaintext ad-
dition and ciphertext-ciphertext addition. According to CKKS,
the addition result of the ciphertext ct0 = (ct0,0,ct0,1) and
plaintext m is (ct0,0 + m,ct0,1); the addition result of two
ciphertexts ct0 = (ct0,0,ct0,1) and ct1 = (ct1,0,ct1,1) is (ct0,0+
ct1,0,ct0,1 + ct1,1), in which the operator “+” represents the
element-wise addition of the two polynomials. Since FHE
is performed on the “polynomial ring”, the result of the
ciphertext addition equals to its modular reduction. For exam-
ple, ct0,0+ct1,0 = (ct0,0[i]+ct1,0[i])(mod q),(ct0,0,ct1,0 ∈Rq),
where q is the modulus.

Operators: it is obvious that HAdd involves two steps,
element-wise addition and modular reduction, so we abstract

2

the first operator as ModAdd (MA for short). MA is the basis
for more complex operations as follows.

② Homomorphic Multiplication with Relinearization:
Similar to HAdd, homomorphic multiplication also con-
tains two types, ciphertext-plaintext multiplication denoted as
PMult, and ciphertext-ciphertext multiplication denoted as
CMult. The ciphertext and plaintext are both polynomials.
PMult directly multiplies ct0 and the plaintext m to get the
result (ct0,0∗m,ct0,1∗m). However, computing CMult(ct0,ct1)
requires c̃t = (d0,d1,d2) mod q = (ct0,0 · ct1,0,ct0,0 · ct1,1 +
ct0,1 ·ct1,0,ct0,1 ·ct1,1) mod q. The final result is ct = (d0,d1)+
p−1 ·d2 ·rlk), in which rlk is the relinearization key represented
as rlk = (b,a) ∈ R2

pq = (−a · s+ e+ p · s2,a) mod p ·q, where
s is the secret key and p is a special integer that relies on the
rlk setting. The corresponding p−1 is the inverse of p in the
modulus pq, represented as p−1 · p≡ 1(mod pq).

Operators: PMult and CMult involve plenty of polyno-
mial multiplications, i.e. ct0,0 · ct1,0 or −a · s. The coefficients
of each polynomial should be firstly transformed to the “point-
value” representation through NTT before multiplication. The
point values then perform element-wise multiplication and
modular reduction. The result is then converted back to the
coefficient representation by INTT. We hence abstract three
lower-level operators: NTT/INTT, ModMult (MM for short),
and MA (same as HAdd).

③ Rescale: this operation scales down the PMult or
CMult result by the scaling factor ∆. The process can not be
achieved by simple division in the RNS-based FHE schemes,
because the large integers, including the modulus and polyno-
mial coefficients, have already been decomposed into multiple
small-integers, a.k.a., the RNS components, by the Chinese
Remainder Theorem.

Therefore, the RNS-based Rescale operation is described
formally as ct = (ct(j) = (c(j)

0 ,c(j)
1)0≤ j≤l) into ct ′ = (ct ′(j) =

(c′(j)
0 ,c′(j)

1)0≤ j≤l−1), where c′(j)
r = q−1

l · (c
(j)
r − c(l)r) mod q j

for r = 0,1 and 0 ≤ j ≤ l− 1. The ct(j) is one of the RNS
components of a ciphertext, and q−1

l is the inverse of ql under
q j, which satisfies q−1

l ·ql mod q j = 1.
Operators: the Rescale operation is fulfilled by a series

of ModAdd and ModMult. Therefore, it contains three lower-
level operators as well: MA, MM, and NTT/INTT.

④ Keyswitch: This operation leverages an extra key called
the keyswitch keys on the ciphertext to make it decryptable
by the original secret key. In classic procedures [29], there
are three sub-operations in Keyswitch: RNSconv, Modup,
Moddown, formalized as Eq. 1-3. RNSconv aims to transform
ab into ac and the footnotes represent the different RNS bases.
Modup extends the b-based ab to the RNS bases b and c via
the RNSconv operation. In contrast, Moddown is responsible
for reducing the RNS base of the data.

RNSconv(ab,ac) :

ac←− (
l−1

∑
j=0

[a(j)
b ∗ q̂−1

j]q j ∗ q̂ j mod pi)i=0,1··· ,k−1,
(1)

Algorithm 1: Primitive NTT
Input: Polynomial a ∈ Rq of degree n−1, n-th

primitive roots wn ∈ Zq, modulus M
Result: Polynomial antt ∈ Rq

1 l = log2 (n);
2 for r←− 1, · · · , l do
3 mid = 2r−1;
4 for i←− 0,2r,2r+1 · · · ,n−2r do
5 temp = 1;
6 for j←− 0,1, · · · ,mid−1 do
7 u = x[i+ j];
8 v = x[i+ j+mid] ∗ temp % M;
9 x[i+ j] = (u+ v) % M;

10 x[i+ j+mid] = (u− v) % M;
11 temp = temp ∗ wn/2r

n % M;
12 end
13 end
14 end

Moddown(ab,bc):

(ab,bc)−→ (bc−RNSconv(ab,ac))∗ [P−1]c, (2)

Modup(ab) : ab −→ (ab, RNSconv(ab,ac)). (3)

Operators: from the three sub-operations, we can see that
each of them is also composed of a series of MA and MM.
NTT/INTT is also needed for the point-value transformation,
so we abstract the operators similarly to the Rescale as:
MA, MM, NTT/INTT.

⑤ Rotation: this operation is provided for rotating the
ciphertext, which is very commonly used in some AI-related
privacy computing, i.e. federated learning. Apart from the
plaintext that the rotation can be directly issued, directly
rotating the ciphertext violates the correctness of the plain-
text. Therefore, the Rotation operation includes two sub-
operations: it firstly establishes the “index mapping” relation-
ship between the current and new ciphertexts; then, it issues
the Keyswitch for the correct decryption using the original
secret key.

Operators: the Keyswitch operation in Rotation is
identical as previously specified. The index mapping operation
maps the current index i of the ciphertext polynomial to i · k
mod N as shown in Eq. 4 where k is the parameter associated
with the Rotation step, N is the polynomial length, and
sgn is the sign under the two different modulo results. Every
time the Rotation is invoked, the mapping operation must
be issued. Therefore, We abstract this computation as a new
lower-level operator termed “Automorphism”.

sgn =

{
−1 i f i · k mod 2N > N,

1 i f i · k mod 2N < N.
(4)

Intuitively, this operator does not cost large computation
resources because Eq. 4 only entails one modular reduction

3

TABLE I
OPERATOR REUSE IN BASIC FHE OPERATIONS.

MA MM NTT Automorphism SBT
Modup ✓ ✓ ✓

Moddown ✓ ✓ ✓
HAdd ✓
PMult ✓ ✓ ✓ ✓
CMult ✓ ✓ ✓ ✓

Rotation ✓ ✓ ✓ ✓ ✓
Keyswitch ✓ ✓ ✓ ✓

Rescale ✓ ✓ ✓ ✓
Bootstrapping ✓ ✓ ✓ ✓ ✓

in terms of the current index i. However, the degree of
the polynomial (N) usually ranges from 212 to 217, which
means mapping to the new index will be issued many times.
Worsestill, conventional automorphism computation cannot be
vectorized, because the new index does not comply with
a fixed pattern. It will result in conflicts between different
indices for the in-situ storage. Section III-B will elaborate our
proposed HFAuto to resolve this problem.

⑥ Bootstrapping: for the FHE application that requires
deeper multiplicative depth, this operation issues the decryp-
tion using the encrypted secret key to refresh the ciphertext to
a lower noise level. Bootstrapping is the most complex
operation in FHE, and we employ the state-of-the-art packed
Bootstrapping algorithm [30] that contains a combina-
tion of PMult, CMult, HAdd, Keyswitch, and Rescale
operations.

Operators: since Bootstrapping is comprised of many
other basic operations, the operators abstracted also coincide
with them, including, MA, MM, NTT/INTT, and Automor-
phism. The complexity stems from the highly frequent reuse
of these operators to fulfill the whole Bootstrapping
operation, which is just the objective Poseidon targets.

The abstracted operators all involve the modular reduction;
for example, NTT/INTT takes the modulo of the point values
as the final step; autormorphism uses modular reduction to
compute the new index mapping. Therefore, modular reduction
can also be reused among the abstracted operators. We instan-
tiate the modular reduction alone as an individual operator,
termed as “Shared Barrett Reduction (SBT for short)”. TABLE
I summarizes the operator reuse in Poseidon for different basic
operations of FHE.

B. Acceleration Opportunities

(1) Resource Reuse. Simply boosting the computation par-
allelism is surely able to improve the FHE performance.
However, the increased resources also requires a matched
bandwidth to support high-speed computation. Especially for
FHE, the ciphertext computation consumes an extremely large
bandwidth. The optimal solution should balance the two sides
through the resource reuse mechanism to bridge the gap
between frequent data movement and the limited bandwidth
provided, instead of blindly piling up the resources.

If we decompose the basic operations into lower-level
operators, different operations might have many overlaps. For
example, HAdd and PMult both involve MA; Keyswitch

and Bootstrapping both involve NTT/INTT and automor-
phism. It is hence unnecessary to implement each basic opera-
tion in the accelerator. By time-multiplexing and dynamically
combining different operators at runtime, the higher-level FHE
operations could also be achieved but in a hardware-efficient
manner.

(2) Operator Optimization. The complexity of the operators
described in Section II-A are also different. For example, MA
only requires a simple comparison of the ciphertext (as will
be shown in Figure 3), while NTT on the contrary is very
computationally intensive; Automorphism aims at the data
mapping on the super-long vector and is difficult to process
in parallel. The diversity of the operators makes the pipeline
critical path latency hard to harness as well.

However, there are also opportunities to optimize the time-
consuming operators. For example in NTT/INTT, one of
the important operands - “twiddle factor” has exponential
characteristics and satisfies the exponential operation rules. By
fusing multiple twiddle factors, expensive modular arithmetic
could be decreased. This procedure is called “NTT-fusion”
in Poseidon. Similarly in Automorphism, by dividing a long
vector into sub-vectors, the data mapping will be transformed
into the mapping between sub-vectors, which is beneficial to
increase the computation parallelism.

We will start detailing these methodologies in the next
section.

III. METHODOLOGY

As two most expensive operators in CKKS-alike FHE, NTT
and Automorphism entail a large amount of computation and
data movement. The computation pattern also influences the
on-chip data accesses in the consecutive pipeline stages and the
critical path latency. This section describes the optimization
method targeting the two key operators.

A. NTT-fusion

The basic computation pattern of NTT includes a series
of recursive “Twiddle, Accumulation, and Modulo” (TAM
hereafter) operations, i.e. (a1 + a2 ·w1) mod q, where q is
the modulus; a1 and a2 are two coefficients of a high-
degree polynomial; w1 is the twiddle factor. Modular reduction
(denoted by ‘mod’) is very costly, so we adopt the radix-based
(radix = 2k) FFT idea [13] to optimize the NTT operator. k
is the radix, and if we set k to 3, the three-phase TAM with
24 modular reductions in the conventional NTT transforms
into one-phase “fused TAM” with only 8 modular reductions
[13]. However, it also brings some additional overhead because
of the increase in the twiddle factors. As shown in TABLE
II, the number of twiddle factors (W) increases substantially
compared with the conventional unfused NTT, which further
leads to the increase of MA and MM. Therefore, the selection
of k implies a potential tradeoff between the reduced modular
reductions and the increased overhead introduced by MA and
MM. We will take an in-depth analysis for the optimal k in
Section V.

4

TABLE II
COMPARISON BETWEEN CONVENTIONAL NTT AND NTT-FUSION. W IS

THE NUMBER OF TWIDDLE FACTORS; K IS THE RADIX.

k W
(unfused)

W
(fused)

Mult/Add
(unfused)

Mult/Add
(fused)

2 2 2 8 / 8 12 / 12
3 4 5 24 / 24 56 / 56
4 8 13 64 / 64 240 / 240
5 16 34 160 / 160 992 / 992
6 32 85 384 / 384 4160 / 4160

B. HFAuto

Lemma. If X = ⌊{a mod (C ∗R)}/C⌋, where a,C, and R
are positive integers. Then, X = ⌊a/C⌋ mod R.

Proof. Given a positive integer q and any integer n, there
is n = k ·q+ s, where k, s are integers and 0≤ s < q. We have
a= k1 ·C+s1, where k1 = k2 ·R+s2, 0≤ s1 <C and 0≤ s2 <R.
Thus, substituting k1 into a, we have a = k2 ·R ·C+ s2 ·C+ s1.
Then, substituting a into X , we have X = ⌊{k2 ·R ·C+ s2 ·C+
s1} mod (C ·R)/C⌋= ⌊a/C⌋ mod R. QED.

Automorphism introduced in Section II imposes significant
difficulties for the hardware design due to the large scale of
polynomial degree N and the N-based coordinate mapping.
Therefore, we segment the N-element vector into several sub-
vectors to reduce the mapping domain from N to N/C, where
C is the length of each sub-vector after segmentation (C = 512
in our implementation). We use R=N/C to denote the number
of the segments, and i, j to denote the original coordinates,
i.e., index = i ·C+ j. Thus, the automorphism formula index =
(index · k) mod N is changed into index = {(i ·C + j) · k}
mod N. We use (I,J) to represent this new index, where
I = ⌊{(i ·C+ j) · k} mod N / C⌋, and J = {(i ·C+ j) · k} mod
N mod C. Since N =C ·R, we can obtain I = ⌊{(i ·C+ j) · k}
mod (C ·R)/C⌋, J = {(i ·C + j) · k} mod C = (j · k) mod C.
Referring to the previous lemma, we have I = ⌊{(i ·C+ j) ·k}
mod (C ·R)/C⌋= {(i · k)+ ⌊ j · k/C⌋} mod R. In this way, the
mapping of I-coordinates in automorphism can be achieved by
the row mapping twice, i.e., Stage ❶ and Stage ❷ introduced
in Section IV corresponding to (i ·k) mod R and ⌊ j ·k/C⌋ mod
R, respectively. Similarly, the mapping of J-coordinate can be
achieved by the column mapping detailed in Stage ❸.

The benefit of this optimization is twofold. Firstly, it
turns the original automorphism that requires the element-by-
element mapping on the entire vector into the cost-effective
mapping between multiple small sub-vectors. By expanding
the mapping granularity (from 1 to C), an increased parallelism
is attained. Secondly, the parallel read/write of sub-vectors
simplifies the original data path, which greatly boosts the
performance and design flexibility as well.

IV. FHE ACCELERATOR - POSEIDON

A. Overall Architecture

The overall architecture of Poseidon is shown in Fig.
2. It primarily includes the memory system including the
scratchpad and high bandwidth memory (HBM hereafter), and
the computing cores including MM, MA, NTT, Automorphism

H
ig

h
-B

a
n

d
w

id
th

 M
e
m

o
ry

M
e

m
 c

o
n
tr

o
lle

r

Register File

MA × 1

MM × 1

(I)NTT × 1

Automorphism

× 2

SBT × 1

512

lanes

..
.

..
.

HBM2 stack

× 16 channels

64-bits ×1800Mbps

HBM2 stack

× 16 channels

64-bits ×1800Mbps

R
N

S
c

o
n

v

H
o

s
t

D
D

R
 PCIe

16GB/s

batch

data*512

BRAMs

460GB/s

Register File

Register File

Register File

Stage 1 Stage 2 Stage 3

AXI

Fig. 2. Poseidon overall architecture.

and SBT. To utilize FPGA resources efficiently, we share
the SBT cores with NTT and MM cores. In addition, given
the specialty of Modup and Moddown, we cascade MA and
MM cores to implement RNSconv, instead of instantiating
additional cores separately.

Poseidon decomposes all higher-level operations into basic
operator-level computations to maximize parallelism and im-
prove versatility. The size of the vector lane is set to C = 512
as shown in the figure, which matches the data width of the
scratchpad cluster. The scratchpad is directly connected to the
HBM2 memory controller, and the data are categorized in the
scratchpad and provided to the designated cores afterward.
Since all cores are fully pipelined, the throughput will possibly
attain C = 512 data/cycle in theory. We use the RNS-based
FHE scheme to limit the data width to 32 bits, thereby avoiding
the hardware overhead of dealing with super large-width data
arithmetic. CraterLake [36] verifies that the data width as
minimum as 28 can just obtain sufficient prime moduli under
the modulo-chain length L = 60. We choose the slightly larger
32 bits to normalize the HBM accesses and simultaneously
support deeper multiplication depth.

Memory System. The Poseidon on-FPGA memory system
mainly comprises register files and BRAMs. It also leverages
the abundant off-FPGA bandwidth provided by HBM to
accelerate the data movement. The HBM architecture involves
two HBM2 stacks, with each stack having 16 channels. Each
channel is 64-bit width with the bit rate of up to 1800 Mbps,
which provides a theoretical bandwidth of 460 GB/s. The
overall data flow is organized as follows: in Stage ❶, the
data are loaded from the host DDR to the HBM via the PCIe
interface; in Stage ❷, HBM transfers the data to the register
file and BRAM directly connected to the cores; the cores
obtain the data from the scratchpad to accomplish computation
and write back the data in Stage ❸. A polynomial vector
can be segmented by the number of HBM channels, and we
can abstract the multi-channel HBM into a vector memory

5

op1

op2

u

Result
p

CMP

M
U

X

CMP

M
U

X

Input buffer

MM/MA

MM/MA

MM/MA

MM/MA

......

Uper half

Lower half

M
U

X

CMP

op1

op2

p

Result

ModMult

ModAdd

output

buffer

Fig. 3. MA/MM core architecture. We implement fine-grained decomposition
to reduce the resource consumption of ModMult. Following Barrett Reduction
algorithm, we implement a subtractor to perform ModAdd.

Input

 buffer

MA

MA

MA

MA

......

MM

MM

MM

MM

......

Input

buffer

output

buffer
output

buffer

Fig. 4. RNSconv architecture, designed by cascading MA and MM core.

with multiple read/write ports and no access conflicts. The
parallelism of the on-chip storage and computational cores is
also designed in accordance with the HBM channels, thereby
unifying the data management in the accelerator. In Section
V, we employ Xilinx Alveo U280 [42] to provide the HBM
support for Poseidon.

B. Computational Cores

(1) MA and MM. The ModAdd operation aims to add
two polynomials element-wise, and then obtain the modulo
result. Since each input polynomial has already performed
modular reduction, its value is no larger than the modulus q.
Therefore, ModAdd can be accomplished by comparing with
q and subtracting q if the addition result is greater than q. As
shown in Fig. 3, two conditions are handled: the result is less
than or greater than q, following Eq. 5:

(a+b) mod q =

{
a+b, a+b < q,

a+b−q, a+b≥ q.
(5)

Compared with ModAdd, ModMult of two ciphertexts is more
complicated, following Eq. 6:

resa+b = a∗b,
p = resmult/q,
resmultmod = resmult − (p∗q).

(6)

Given two polynomials a and b, multiplying a with b
obtains the intermediate result denoted as resmult = a ∗ b.
The result will be divided by the modulus q to obtain the
quotient p. resmult subtracted by p ∗ q is the final ModMult
result. Fig. 3 shows the hardware implementation of MM.
Since implementing division using FPGA is very expensive,
we employ Barrett Reduction [20] for the division result.
By introducing the middle term u to transform division into
multiplication and shifting, the upper and lower half hence
represents the k + 1 and k− 1 bits for a datum with 2k-bit
width; thus, Barrett Reduction avoids the high overhead in
ModMult.

(2) RNSconv. It is used to accelerate the Keyswitch
operation introduced in Section II, shared by Modup and
Moddown operations. Modup comprises the vector-scalar mul-
tiplication and element-wise accumulation, while Moddown is
the combination of the vector subtraction and vector-scalar
multiplication. Our design does not include the vector-scalar
cores, but the same functionality can be accomplished using
MA and MM cores. In specific, RNSconv is implemented by
cascading the MM and MA cores with additional routing and
control logic. The hardware design details are shown in Fig.
4. It has two data routes. The first one is the MA core that
fetches two groups of data from the input buffer and takes the
result as the input of the MM core to complete Modup. The
another one is the MM core that takes the result as the input
of the MA core to complete Moddown.

(3) NTT/INTT. As the most complex and time-consuming
operator, NTT/INTT core directly determines the accelerator
performance. Our design adopts the “NTT-fusion” concept
introduced in Section III to decrease the modular reductions
and iterations in conventional NTT. We explore the per-
formance in different parameter settings in NTT-fusion and
select the appropriate k = 3 to achieve optimal performance
and resource utilization in tandem. Conventional NTT would
require log28 = 3 phases with 24 unfused TAMs in total, if
taking 8 operands as input. However, only 1 phase with 8 fused
TAMs is required in NTT-fusion. For the NTT/INTT core
implementation, we simply hardcode the computing circuit in
RTL under this setting.

Data Access Pattern. The parallel NTT cores also require
the parallelized data input to achieve the best throughput.
The BRAMs in FPGA is responsible for the storage of these
data including the twiddle factors and the cyphertexts. Hence,
BRAM data access efficiency is vital for the efficiency of
the NTT cores as well. In Poseidon, NTT-fusion effectively
reduces the NTT phases and TAMs. If we set k to 3 and
the given polynomial degree is 4096 (212), for example, the
required phases are 4 (log24096/k) instead of 12 (log24096),

6

…

…

…

7

6

1

0

…

15

14

9

8

…

4087

4086

4081

4080

4095

4094

4089

4088

… …

56 ~ 59 ~ 63

48 ~ 51 ~ 55

8 ~ 11 ~ 15

0 ~ 3 ~ 7

…

120~127

112~119

72 ~ 79

64 ~ 71

…

4024 ~ 4021

4016 ~ 4032

3976 ~ 3983

3968 ~ 3975

4088 ~ 4095

4080 ~ 4087

4040 ~ 4047

4032 ~ 4039

… …

448 ~ 511

384 ~ 447

64 ~ 127

0 ~ 63

…

960 ~ 1023

896 ~ 959

576 ~ 639

512 ~ 575

…

3520 ~ 3583

3456 ~ 3519

3136 ~ 3199

3072 ~ 3135

4032 ~ 4095

3968 ~ 4031

3648 ~ 3711

3584 ~ 3647

… …

Iter1: 512 (=4096/8)

Iter2: 64 (=4096/64)

Iter3: 8 (=4096/512)

5

4

1

0

12

11

8

15

19

18

23

22

26

25

30

29

33

32

37

36

40

47

44

43

55

54

51

50

62

61

58

57

O
ff

s
e

t
=

 1

O
ff

s
e

t
=

 6
4

…

…

…

…

…

…

…

…

…

7

6

14

13

21

20

28

27

35

34

42

41

49

48

56

63

3

2

10

9

17

16

24

31

39

38

46

45

53

52

60

59 O
ff

s
e

t
=

 8

: the 1
st

 8 input data for the NTT core

: the 4
th

 8 input data for the NTT core

: the 8
th

 8 input data for the NTT core

Fig. 5. Data access pattern in Poseidon. We show the front three iterations
(or phases) in TABLE III.

TABLE III
DATA ACCESS PATTERN COMPARISON. PRIOR ACCELERATORS FOLLOW
THE CONVENTIONAL NTT (12 PHASES FOR 4096 CIPHERTEXT), WHILE
POSEIDON ADHERES TO NTT-FUSION (ONLY 4 PHASES). INDEX OFFSET

DENOTES THE DATA ACCESS PATTERN.

Prior accelerators Poseidon (k = 3)

ITERs TAMs Index
Offset ITERs Fused

TAMs
Index
Offset

1 4096 1 1 4096 1
2 4096 2 / / /
3 4096 4 / / /
4 4096 8 2 4096 8
5 4096 16 / / /
6 4096 32 / / /
7 4096 64 3 4096 64
8 4096 128 / / /
9 4096 256 / / /
10 4096 512 4 4096 512
11 4096 1024 / / /
12 4096 2048 / / /

Total: 12 phases, 4096*12 TAMs Total: 4 phases, 4096*4 TAMs

as compared in TABLE III. If we simply assume each phase
is an iteration executed by one NTT core, it requires 12
iterations in conventional NTT while NTT-fusion only requires
4. Specified in TABLE III, if we index 4096 input data,
conventional NTT will offset 2iter−1 indices to access each
input data for each phase, while Poseidon will offset 2(iter−1)∗k.
To achieve the highest pipeline efficiency, the target input
data should be ready when each phase begins. Fig. 5 presents
the data access pattern which takes the first three iterations
of TABLE III as the example. In iteration 1, it loads in
the operands with index 0∼7, 8∼15, . . . 4088∼4095; then,
in iteration 2, it does not take in the data sequentially but
periodically with the fixed offset (i.e., index 0, 8, 16, 24, 32,
40, 48, 56); in iteration 3, the index offset is 64 because it
needs to reorder the index for the next phase.

The NTT core in Poseidon takes 8 operands as input.
The BRAM storage of the 8 input operands is also specially
manipulated for the best efficiency. Also taking iteration 2
as the example, the required 8 operands (marked in red) are
diagonally stored as shown in Fig. 5. This is because each
BRAM could only read/write one data in one cycle. Since
one core needs to load 8 operands in parallel, the operands are

interleaved and stored in 8 different BRAMs. Therefore, the
NTT cores can directly load the operands without any delay at
the beginning of each phase. In order to match the throughput
of other operator cores, we instantiate 64 NTT cores of 8-input
which can process 512 data in parallel.

(4) Automorphism. Automorphism essentially performs
polynomial coordinate mapping. Its software implementation
is relatively simple, while the hardware design is untoward
because the mapping domain of each coordinate is the entire
polynomial vector. It will inevitably result in two coordinates
mapped in different vector lanes. A simple solution is to store
the whole polynomial vector in registers; however, the degree
of the polynomial may attain 217 and the hardware resources
will be burdened. Therefore, we design a hardware-friendly
automorphism core based on the method in Section III. Fig.
6 shows the logic of the automorphism core that takes the
parameter setting as C = 512, R = 4, and k = 3. According to
the simplified mapping formula, automorphism can be divided
into four stages. The first two stages implement row mapping,
and the last two stages implement column mapping:

Stage ❶: rowi to row(ik mod R). This stage reads C = 512
data per cycle from BRAMs according to the address selection
circuit, and write them to FIFO.

Stage ❷: FIFO(i, j) to FIFO(i+ jk/C mod R, j). This stage
cyclically shifts the data in each FIFO.

Stage ❸: Switching data dimension. We use a similar idea
with the memory access pattern of the NTT core to map the
physical row data to the logical rows, and realize the two-
dimensional data access on BRAMs.

Stage ❹: columni to column(ik mod C). This stage is similar
to Stage ❶, where the data in column i will be read and write
to the column ik mod C.

V. EVALUATION

A. Experimental Setup

Platform. Poseidon is a practical FHE accelerator, so we
build a real-world experimental environment based on the x86
CPU system. The Poseidon accelerator is implemented in the
Xilinx Alveo U280 FPGA plugged into the PCIe slot of the
mainboard. We installed Xilinx off-the-shelf developing toolkit
Vivado [2] and Vitis [1] version 2021.1 on the host side.
These tools will be working in conjunction with the Xilinx
Runtime [3] environment and OpenCL framework to interact
with the Alveo U280 through PCIe. Alveo U280 owns HBM.
The intermediate data of the FHE applications are transferred
between on-chip storage and the HBM. Only the results are
sent back to the host.

Baseline. In our experiments, the CPU (Intel Xeon Gold
6234) running at 3.3 GHz with a single thread is selected
as the baseline. Besides, we also compare Poseidon with the
state-of-the-art GPU [21], FPGA [25], [26], [32], and 4 FHE
accelerator ASICs [23], [24], [35], [36].

Benchmark. We use the following 4 benchmarks (as shown
in TABLE V) for evaluation:

(1) Logistic regression (LR). It is the HELR [19] algorithm
implementation based on the CKKS scheme. In combination

7

BRAMFIFOFIFO

2046

2045

1540

1539

1534

1533

1028

1027

1022

1021

516

515

510

509

4

3

Column:

1538

1537

1026

1025

514

513

2

1

2048

2047

1536

1535

1024

1023

512

511

B
a

tc
h

 D
at

a
*5

1
2

1022

1021

516

515

510

509

4

3

514

513

2

1

1024

1023

512

511

2046

2045

1540

1539

1534

1533

1028

1027

1538

1537

1026

1025

2048

2047

1536

1535

1021

516

515

509

4

3

514

513

2

1

2045

1540

1539

1533

1028

1027

1538

1537

1026

1025

10225102046 1534

10235112047 1535

10245122048 1536

B
at

ch
 D

at
a

*5
1

2

513

Stage1

2

1

1026

1538

1537

1025

1024511

1023

512

1536

3

4

1533

 1534

1539

1021

1022

1020

510

509

508

507

2046

2047

2048

2045

2044

2043

2042

1535

B
at

ch
 D

at
a

*5
12

513

1

1537

1025

3

1534

1539 1022

510

2046

2

1026

1538

2

3 6

511

1023

2047

1535

1024

512

1536

2048

503 506 509

BRAM

Stage2 Stage3 Stage4

Control logicAddress select Address select

514

1027

515

Sh
if

t
N

u
m

0

0

2

C
=

5
1
2

R=N(2048)/C=4

rowi rowi *k mod R fifoi ,j fifo i+ j*k/C mod R, j columni columni *k mod C

0

Switching data dimention

Fig. 6. Automorphism architecture in Poseidon. Only one dual-port BRAM is needed. The result of Stage 4 will be written back to HBM directly.

with Bootstrapping, we use the multiplication depth of
L = 38 and evaluate the average performance of 10 iterations
supported by two Bootstrapping operations.

(2) LSTM. It is the Long-Term Short-Term (LSTM) model
in natural language processing [27] which aims to iterate the
formula yi+1=σ(W0yi+W1x1) several times. σ is a nonlinear
activation function approximated by a cubic polynomial, and
W is a matrix with dimensions 128×128. It requires 50
Bootstrapping operations in total during one inference.

(3) ResNet-20. This benchmark is the inference of an image
on the ResNet-20 model implemented with FHE [28].

(4) Packed bootstrapping. This benchmark adopts the most
advanced fully packed bootstrapping algorithm [30]. The high
noise-level ciphertext with the multiplication depth L = 3
will be refreshed to the low noise-level ciphertext with the
multiplication depth L = 57.

These benchmarks are common in reality, i.e., “federated
learning” used to train/test a machine learning model, “medical
image prediction” with privacy using deep neural networks.
The performance of the FHE accelerator is imperative to the
user experience and quality of service in these scenarios.

B. Accelerator Performance

(1) FHE Basic Operations. The performance of the basic
operations in FHE, i.e., PMult, CMult, NTT, Keyswitch,
Rescale, and Rotation, directly determines the perfor-
mance of the accelerator. The accelerator architectural design
in return determines the performance of the basic operations.
In Poseidon, we implement these operations efficiently through
operator reuse (Note that NTT is actually a basic operator, but
we take it out separately due to its high complexity). We use
“operations per second” as the performance metric. Since our
FPGA baseline - HEAX [32] does not report the results under
our parameter setting, we estimate the highest performance
based on its hardware design for comparison.

As shown in Table IV, Poseidon achieves better acceleration
on complex operations, i.e., PMult (349×), NTT (1348×),
Keyswitch (780×), and Rotation (774×). Compared
with the state-of-the-art GPU, Poseidon still achieves sev-

0

3

6

9

12

15

0

2000

4000

6000

8000

10000

64 128 256 512

E
xe

c
u
ti
o
n
 t

im
e
 (

s
)

E
D

P

Lanes

EDP

Execution time

100

63.55

61.53

59.66

61.53

100

16.64

6.1

5.96

6.1

19.81

32.37

31.38

32.37

3

0% 20% 40% 60% 80% 100%

Hadd
(68.27 us)

Pmult
(75.13 us)

Cmult
(3656.66 us)

Keyswitch
(3205.94 us)

Rotation
(3306.55us)

Rescale
(253.28us)

MM MA NTT Automorphism

us)

us)

Fig. 7. Operator core analysis. The ciphertext parameters are set to N =
216,L = 44.

TABLE IV
PERFORMANCE COMPARISON OF FHE BASIC OPERATIONS. WE USE

“OPERATIONS PER SECOND” AS THE PERFORMANCE METRIC.

CPU
(Xeon)

Over
100x

(GPU)
[21]

HEAX
(FPGA)

[32]

Poseidon
(FPGA) speedup

HAdd 35.56 4807 4,161 13,310 374×
PMult 38.14 7,407 4,161 13,310 349×
CMult 0.38 57 119 273 718×
NTT 9.25 / 237 12,474 1,348×

Keyswitch 0.4 / 104 312 780×
Rotation 0.39 61 / 302 774×
Rescale 6.9 1,574 / 3,948 572×

eral times improvements. Compared with HEAX, the most
advanced FPGA-based prototype, Poseidon achieves 3× and
50× speedup on Keyswitch and NTT, respectively.

Besides, we also analyze the key FHE operators. Fig. 7
clearly shows the basic operations are comprised of the key op-
erators as mentioned before. HAdd only involves MA; PMult
only involves MM, while Rotation involves all 4 operators.
MM is also the most frequently used operator in Rescale,
Rotation, Keyswitch and CMult. The analysis also takes
the data movement overhead into consideration.

(2) Full-system performance. This experiment evaluates
the full-system performance of Poseidon with state-of-the-

8

TABLE V
FULL-SYSTEM PERFORMANCE COMPARISON WITH SOTA ACCELERATOR
PROTOTYPES. WE USE ACTUAL BENCHMARK EXECUTION TIME IN MS AS

THE METRIC.
LR
[19]

LSTM
[27]

ResNet-20
[28]

Packed Boot-
strapping [30]

F1+ (ASIC) 639 2,573 2,693 58.3
CraterLake (ASIC) 119.52 138.0 249.45 3.91

BTS-1 (ASIC) 39.9 / 1,910 /
BTS-2 (ASIC) 28.4 / 2,020 /
BTS-3 (ASIC) 43.5 / 3,090 /
ARK (ASIC) 7.717 / 294 /

over100x (GPU) 775 / / /
Poseidon (FPGA) 72.98 1,848.89 2,661.23 127.45

TABLE VI
COMPARISON OF THE STORAGE RESOURCE CONSUMPTION.

HBM Scratchpad Running
Fre. (GHz)Capacity / Bandwidth

(GB / TB/s) (MB / TB/s)
F1+ [35], [36] (ASIC) 16 / 1 256 / 29 1

CraterLake [36] (ASIC) 16 / 1 256 / 29 1
BTS [24] (ASIC) 16 / 1 512 / 38.4 1.2
ARK [23] (ASIC) 32 / 2 512 / 20 1
Poseidon (FPGA) 8 / 0.45 8.6 / 3.4 0.45

art accelerator prototypes including GPU and ASIC. As is
shown in TABLE V, Poseidon performs 10.6× higher speedup
than over 100x [21] for the benchmark LR. For the same
benchmark, Poseidon’s performance is quite close to other
accelerator ASICs. For the other three benchmarks, Poseidon’s
performance is close to and even better than F1+ [35], [36].
However, there is still a large gap between Poseidon and some
ASICs like CraterLake [36] and ARK [23]. Frequent data
movement will bring significant overhead, so CraterLake and
ARK apiece provides 256 MB and 512 MB register files to
the computing cores as a scratchpad, which improves the data
reuse and reduces the interactions with the off-chip storage.
Poseidon does not instantiate such large on-chip storage con-
sidering the practical implementation on FPGA and ASIC, and
only provides the scratchpad with 8.6 MB capacity and 3.4
TB bandwidth, which is much less than the two accelerators.
However, Poseidon still achieves impressive performance due
to the efficient hardware design of the operator cores and the
resource reuse strategy.

Fig. 8 and Fig. 9 show the execution time breakdown of
the benchmarks at two different granularities: the FHE basic
operations and the key operators. As can be seen from Fig.
8, Keyswitch and CMult are the two FHE operations
with the highest proportion, accounting for more than 65%
across all benchmarks. Fig. 9 further shows that most of
the time is consumed by MM and NTT operator cores. The
analysis of the two granularities is consistent because the key
computations in Keyswitch and CMult are just MM and
NTT. Therefore, we conclude that the performance of FHE
depends highly on MM and NTT operators. The operator reuse
in Poseidon provides enough flexibility in supporting diverse
FHE operations, not only in one particular algorithm but also
in a wide range of general-purpose FHE algorithms.

3.06

3.16

4

5.43

1.86

2.53

2.46

5.03

45.77

40.57

41.5

30.57

35.57

37.33

36.77

36.33

1.5

3.93

2.32

6.18

12.24

12.48

12.95

16.46

0% 20% 40% 60% 80% 100%

LR
(72.98 ms)

LSTM
(1848.89 ms)

ResNet-20
(2661.57 ms)

Packed
Bootstrapping
(127.45 ms)

Keyswitch Rotation RescaleHAdd PMult CMult

Fig. 8. Analysis of the basic operations in benchmarks. We evaluate the
execution time, and Keyswitch and CMult occupy the largest proportion.

100

63.55

61.53

59.66

61.53

100

16.64

6.1

5.96

6.1

19.81

32.37

31.38

32.37

3

0% 20% 40% 60% 80% 100%

Hadd
(68.27 us)

Pmult
(75.13 us)

Cmult
(3656.66 us)

Keyswitch
(3205.94 us)

Rotation
(3306.55us)

Rescale
(253.28us)

MM MA NTT Automorphism

3.06

3.16

4

5.43

1.86

2.53

2.46

5.03

45.77

40.57

41.5

30.57

35.57

37.33

36.77

36.33

1.5

3.93

2.32

6.18

12.24

12.48

12.95

16.46

0% 20% 40% 60% 80% 100%

LR
(72.98 ms)

LSTM
(1848.89 ms)

ResNet-20
(2661.57 ms)

Packed
Bootstrapping
(127.45 ms)

Hadd Pmult Cmult Keyswitch Rotation Rescale

15.51

15.39

15.22

19.13

57.63

56.76

55.15

44.95

25.36

23.91

27.16

29.74

1.5

3.94

2.47

6.18

0% 20% 40% 60% 80% 100%

LR
(72.98 ms)

LSTM
(1848.89 ms)

ResNet-20
(2661.57 ms)

Packed
Bootstrapping
(127.45 ms)

MA MM NTT Automorphism

MA MM NTT Automorphism Memory access
Fig. 9. Execution time analysis of 4 key operators in FHE basic operations.
MM and NTT occupy the largest proportion.

C. Bandwidth Utilization

High-performance FHE accelerator requires optimized op-
erator core design, and the performance of the operator cores
further requires the support of sufficient memory bandwidth.
Poseidon uses the HBM+FPGA architecture, and we provide
a detailed evaluation of its bandwidth utilization. TABLE VII
shows the lowest bandwidth utilization of each FHE operation.
The bandwidth consumed by HAdd and PMult is significantly
higher than other operations due to its relatively simpler
computing logic but large-volume data access from HBM.
Rescale has the lowest bandwidth utilization, because of
its frequent reuse of the small-scale data stored in the 8.6 MB
scratchpad of Poseidon. In addition, We also evaluate the aver-
age bandwidth utilization of the entire benchmark, and obtain
nearly 43% ∼ 59% utilization. The evaluation concludes that
complex operations are not the major bandwidth consumer;
instead, simpler operations usually consume larger bandwidth
due to the unified and frequent data access.

D. Poseidon Specifics

(1) Parameter Selection—NTT Fusion. In radix-based NTT,
parameter k denotes how many TAMs will be fused at a time
in Poseidon. This parameter directly affects the NTT compu-
tations in that higher k indicates fewer modular reductions.
However, a higher k setting also spawns new twiddle factors
and extra computations that will undermine the accelerator
performance in return. In order to explore the finest setting, we
evaluate several metrics scaling with k, including the hardware
resource utilization and execution time. As shown in Fig. 10,
the four metrics uniformly denote an inflection at nearly k = 3,
marked as bold. For the hardware metrics like #Regs, #DSPs,

9

TABLE VII
LOWEST AND AVERAGE BANDWIDTH UTILIZATION ANALYSIS OF BASIC

OPERATIONS AND WHOLE BENCHMARKS.

LR
[19]

LSTM
[27]

ResNet-20
[28]

Packed
Bootstrapping

[30]
HAdd (%) 97.79 97.69 97.76 63.29
PMult (%) 97.65 97.15 97.48 97.48
CMult (%) 44.72 55.55 50.15 72.35

Keyswitch (%) 36.8 47.47 42.05 63.29
Rotation (%) 65 32.39 58.67 48.67
Rescale (%) 26.16 29.98 26.83 26.83

Bootstrapping (%) 46.39 56.43 52.18 /
Average (%) 42.78 51.99 48.08 59.07

0.0

0.4

0.8

1.2

1 2 3 4 5 6 7

L

U
T

s
(K

)

Fusion Degree

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7

R

E
G

s
(K

)

Fusion Degree

0

10

20

30

40

1 2 3 4 5 6 7

D

S
P

s

Fusion Degree

0

25

50

75

100

1 2 3 4 5 6 7

#A
ve

ra
ge

 T
im

e
/

N
T

T
 (

us
)

Fusion Degree

Fig. 10. Parameter Selection – k. We evaluated the FPGA resource usage (in
actual #) and the Average Execution Time per NTT (bottom right), scaled by
k. The optimal point emerges at k = 3, where it consumes the lowest resources
with the highest speed.

and #LUT s, the k = 3 inflection denotes the most optimized
resource in FPGA, while for the performance metric NT T (in
microseconds), it denotes a relatively shorter execution time.

(2) HFAuto. Differing from other operators, automorphism
features a more complex data access pattern. Straightforward
hardware implementation can hardly adapt to the fast data
access and efficient pipeline design in Poseidon. HFAuto
resolves this problem, so this experiment aims to quantify the
performance of HFAuto in the automorphism operator cores.
As shown in TABLE VIII, the overhead of straightforward
design (denoted by Auto) consumes fewer resources than
HFAuto because it only processes a single index map in one
cycle. However, its latency is much more significant than

TABLE VIII
RESOURCE UTILIZATION COMPARISON OF THE AUTOMORPHSIM

OPERATOR CORE DESIGN.

FF DSP LUT BRAM Latency
(cycles)

Auto 88 0 0 0 131,073
HFAuto 572 0 25,751 512 517

TABLE IX
HFAUTO PERFORMANCE IN POSEIDON.

LR LSTM ResNet-20
Packed

Bootstrap-
ping

Poseidon-Auto
(ms) 729.8 14,150.2 10,543.1 1,127.2

Poseidon-HFAuto
(ms)

72.98
(10×)

1,848.89
(7.6×)

2,661.23
(3.9×)

127.45
(8.8×)

0

3

6

9

12

15

0

2000

4000

6000

8000

10000

64 128 256 512

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

E
D

P

Lanes

EDP

Execution time

Fig. 11. Sensitivity of the lanes.

0.32

0.32

0.31

0.40

30.86

30.80

29.39

24.52

22.95

21.93

24.46

27.42

0.29

0.78

0.48

1.23

45.57

46.18

45.35

46.43

0% 20% 40% 60% 80% 100%

LR
(3.55 J)

LSTM
(88.89 J)

ResNet-20
(130.28 J)

Packed
Bootstrapping

(6.1 J)

MA MM NTT Automorphism Memory access

Fig. 12. Energy consumption and breakdown. MM and NTT operator cores
take the major proportion besides the memory access.

HFAuto due to the less-optimal parallelism in performing
automorphism. Poseidon leverages HFAuto to obtain high
performance in exchange with more resource consumption.

We also build an ablation study experiment in terms of
different automorphism core designs in Poseidon. As shown in
Table IX, compared with Poseidon-HFAuto, the performance
of Poseidon-Auto may degrade up to an order of magnitude.

(3) Scalability. Fig. 11 shows the lane scaling from 64, 128,
256 to 512, with respect to the execution time and Energy
Delay Product (EDP). We use ResNet-20 as the benchmark
to show the trend. Others behave similarly. We can see that
the accelerator performance increases in accordance with the
lanes. This is reasonable because intuitively the performance
should upgrade with the increased parallelism. Meanwhile,
the performance growth gradually becomes slower due to the
bandwidth limitation. The behavior of EDP is similar to the
execution time. Therefore, We choose lanes=512 to maximize
the performance and balance the bandwidth consumption in
Poseidon.

E. Energy

(1) Energy Consumption and Breakdown.
As shown in Fig. 12, memory access takes up most of the

energy consumption. For the operators, as previously proved
in Fig. 9, MM and NTT take most of the execution time,
which reflects the reason for their large energy consumption.
Although MA occupies a certain proportion of the execution
time, its energy consumption is minimal due to its simple
computing logic.

(2) Energy Efficiency.

10

TABLE X
EFFICIENCY ANALYSIS. WE USE ENERGY DELAY PRODUCT (EDP) AS THE

METRIC. LOWER IS BETTER.

Over
100x
(GPU)

BTS-2
(ASIC)

ARK
(ASIC)

Crater-
Lake

(ASIC)

Poseidon
(FPGA)

LR 180.19 0.092 0.017 3.028 0.18
ResNet-20 / 545.95 24.31 17.08 236.17

LSTM / / / 6.04 113.36
Packed

Bootstrapping / / / 0.0038 0.51

TABLE XI
FPGA RESOURCE UTILIZATION OF POSEIDON.

LUT
(k)

FF
(k) DSP BRAM Latency

(cycles)
MA (×1) 50 68 0 0 3
MM (×1) 170 160 1536 0 5
NTT (×1) 358 344 4032 1024 21

Automorphism (×2) 52 2 0 1024 517
SBT (×1) 98 403 3072 0 11

We use EDP as the efficiency metric. TABLE X lists the
efficiency of Poseidon and the baseline prototypes. For the
benchmark LR, Poseidon is 1000× higher than the GPU-
based accelerator - over100x. Compared with the accelerator
ASICs, Poseidon outperforms CraterLake and BTS for LR and
ResNet-20. Since the power consumption of FPGA is usually
much higher than the ASIC with advanced technology node,
Poseidon demonstrates lower efficiency than the ASICs for
other benchmarks.

F. FPGA Resource Utilization

Based on the high-performance HBM+FPGA platform,
Poseidon includes five types of operator cores: MA, MM,
Automorphism, NTT, and SBT, with a parallelism of 512
lanes. TABLE XI shows the resource consumption of different
cores in detail. Poseidon consumes more DSPs because MM,
NTT and SBT all need to perform complex arithmetic in
FHE-like multiplications. Poseidon also implements the au-
tomorphism operator to support Rotation operation, which
also causes a slight increase in FPGA resources. However,
compared with other FPGA-based prototypes - Kim et al. [25],
[26] and HEAX [32] in TABLE XII, Poseidon demonstrates
less resource consumption due to its optimized hardware
implementation.

VI. DISCUSSION

FHE itself is both computational and memory intensive. The
performance enhancement relies highly on the optimization on
both sides, including the manner in how the costly operators
as well as the bandwidth bottleneck are avoided, which in turn
requires the meticulous design of the accelerator pipeline and
proper key design parameter settings. Poseidon involves three
key design parameters: the fusion degree of NTT (denoted
by ‘k’), the degree of parallelism (512 by default), and the
scratchpad volume (8.6 MB for 512 lanes). Each of them
implies an implicit design tradeoff.

TABLE XII
RESOURCE UTILIZATION COMPARISON. FOR FAIRNESS, WE COMPARE TWO

SELECTED COMPUTATIONS IN FHE - MODMULT AND A SINGLE TAM.

Kim [25] Kim [26] HEAX [32] Poseidon

Mod
Mult

LUT 1988 / 1663 523
REG 1810 / 4256 2000
DSP 12 / 22 9

Single
TAM

LUT / 5368 2066 594
REG / 4927 6297 973
DSP / 19.95 10 9.25

The fusion degree affects the pipeline critical path latency
because NTT is the most time-consuming operator, and a
larger fusion degree benefits the computation throughput while
it also burdens the storage of the twiddle factors. We set k as
3 to balance the hardware overhead and the performance.

Theoretically, the higher the parallelism, the better the
acceleration performance for FHE because of its SIMD-like
computation pattern. However, in practical implementation,
increasing the parallelism cannot always induce a better per-
formance due to the limited bandwidth a particular hardware
platform could provide. An optimal design regime should
also balance the peak computational resources and the data
movement efficiency, and we explored that implementing 512
lanes on our U280 FPGA achieves the best tradeoff.

Apart from prior studies that leverage costly on-chip storage
(i.e., 256 MB [35], [36] and 512 MB [23], [24]), Poseidon
only uses an 8.6 MB scratchpad to cache the intermediate
data, but leverages elaborate dataflow planning with HBM
to collaborate with the main pipeline. Poseidon is also fully
compatible with other memory-access technologies, i.e., Near
Data Processing (NDP). The optimized operator computation
in Poseidon enables the deployment of less expensive compu-
tational units near the vast storage device, i.e., SmartSSD by
Samsung and Xilinx, with even less on-chip storage space for
the scratchpad. We hope Poseidon will act as a jumping board
for future improvements in increasing FHE performance.

VII. CONCLUSION

In this paper, we present an HBM+FPGA solution for FHE
acceleration. We decompose the operators of various FHE
operations in detail and realize the acceleration by reusing
the key operators - MA, MM, NTT, Automorphism and SBT.
In order to make full use of the HBM bandwidth, we use the
radix-based NTT algorithm - NTT-fusion, and explore the best
selection of its key parameter. Besides, we propose a highly-
parallelized automorphism acceleration method - HFAuto that
is convenient for the FPGA implementation to achieve a high-
performance FHE accelerator. Based on the above methodolo-
gies, we propose a practical FHE accelerator - “Poseidon.”
It provides support for complex FHE operations, including
Rotation, Keyswitch, Bootstrapping and so on through efficient
hardware design and operator reuse under limited FPGA
resources. We evaluate Poseidon on Xilinx Alveo U280 FPGA
and prove that it behaves better than state-of-the-art GPU,
FPGA and the accelerator ASICs. We hope this work can
inspire new ideas for future FHE accelerator design.

11

REFERENCES

[1] “Vitis rev:2021.1,” https://www.xilinx.com/products/design-tools/vitis.
html.

[2] “Vivado rev:2021.1,” https://www.xilinx.com/products/design-
tools/vivado.html.

[3] “Xilinxruntime rev:2021.1,” https://www.xilinx.com/products/design-
tools/vitis/xrt.html.

[4] S. Akleylek, Ö. Dağdelen, and Z. Yüce Tok, “On the efficiency of
polynomial multiplication for lattice-based cryptography on gpus using
cuda,” in International Conference on Cryptography and Information
Security in the Balkans. Springer, 2015, pp. 155–168.

[5] A. Al Badawi, B. Veeravalli, C. F. Mun, and K. M. M. Aung, “High-
performance fv somewhat homomorphic encryption on gpus: An imple-
mentation using cuda,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 70–95, 2018.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[7] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley, “Optimised
multiplication architectures for accelerating fully homomorphic encryp-
tion,” IEEE Transactions on Computers, vol. 65, no. 9, pp. 2794–2806,
2015.

[8] X. Cao, C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan, “High-
speed fully homomorphic encryption over the integers,” in International
Conference on Financial Cryptography and Data Security. Springer,
2014, pp. 169–180.

[9] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley, “Accel-
erating fully homomorphic encryption over the integers with super-size
hardware multiplier and modular reduction,” Cryptology ePrint Archive,
2013.

[10] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
1243–1255.

[11] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[12] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
international conference on the theory and application of cryptology
and information security. Springer, 2016, pp. 3–33.

[13] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[14] W. Dai and B. Sunar, “cuhe: A homomorphic encryption accelerator
library,” in International Conference on Cryptography and Information
Security in the Balkans. Springer, 2015, pp. 169–186.

[15] Y. Doröz, E. Öztürk, and B. Sunar, “Evaluating the hardware perfor-
mance of a million-bit multiplier,” in 2013 Euromicro Conference on
Digital System Design. IEEE, 2013, pp. 955–962.

[16] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating fully homomorphic
encryption in hardware,” IEEE Transactions on Computers, vol. 64,
no. 6, pp. 1509–1521, 2014.

[17] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[18] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, 2009, pp. 169–178.

[19] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression on
homomorphic encrypted data at scale,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 9466–
9471.

[20] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[21] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x
faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with gpus,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 114–148, 2021.

[22] A. Khedr and G. Gulak, “Homomorphic processing unit (hpu) for accel-
erating secure computations under homomorphic encryption,” May 21
2019, uS Patent 10,298,385.

[23] J. Kim, G. Lee, S. Kim, G. Sohn, J. Kim, M. Rhu, and J. H. Ahn, “Ark:
Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” arXiv preprint arXiv:2205.00922, 2022.

[24] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
in Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, 2022, pp. 711–725.

[25] S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, “Fpga-
based accelerators of fully pipelined modular multipliers for homomor-
phic encryption,” in 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 2019, pp. 1–8.

[26] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Rutenbar,
“Hardware architecture of a number theoretic transform for a boot-
strappable rns-based homomorphic encryption scheme,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 56–64.

[27] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim et al., “Privacy-preserving machine learning
with fully homomorphic encryption for deep neural network,” IEEE
Access, vol. 10, pp. 30 039–30 054, 2022.

[28] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim et al., “Privacy-preserving machine learning
with fully homomorphic encryption for deep neural network,” IEEE
Access, vol. 10, pp. 30 039–30 054, 2022.

[29] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “High-precision boot-
strapping of rns-ckks homomorphic encryption using optimal minimax
polynomial approximation and inverse sine function,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2021, pp. 618–647.

[30] C. Mouchet, J.-P. Bossuat, J. Troncoso-Pastoriza, and J. Hubaux, “Lat-
tigo: A multiparty homomorphic encryption library in go,” in WAHC
2020–8th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, 2020.

[31] nucyper. Nufhe, a gpu-powered torus fhe implementation. [Online].
Available: https://github.com/nucypher/nufhe

[32] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1295–1309.

[33] S. S. Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“Hepcloud: An fpga-based multicore processor for fv somewhat homo-
morphic function evaluation,” IEEE Transactions on Computers, vol. 67,
no. 11, pp. 1637–1650, 2018.

[34] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 2019 IEEE International symposium
on high performance computer architecture (HPCA). IEEE, 2019, pp.
387–398.

[35] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable acceler-
ator for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
238–252.

[36] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted
data.” in ISCA, 2022, pp. 173–187.

[37] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-
preserving machine learning on the gpu,” in 2021 IEEE Symposium on
Security and Privacy (SP), 2021, pp. 1021–1038.

[38] vernamlab. Cuda-accelerated fully homomorphic encryption library.
[Online]. Available: https://github.com/vernamlab/cuFHE

[39] W. Wang, Z. Chen, and X. Huang, “Accelerating leveled fully homo-
morphic encryption using gpu,” in 2014 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2014, pp. 2800–2803.

[40] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Transactions on
Computers, vol. 64, no. 3, pp. 698–706, 2013.

[41] W. Wang, X. Huang, N. Emmart, and C. Weems, “Vlsi design of
a large-number multiplier for fully homomorphic encryption,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 9, pp. 1879–1887, 2013.

[42] Xilinx, “Product brief of smartssd,” https://www.xilinx.com/products/
boards-and-kits/alveo/u280.html.

12

